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Abstract

A fibrous composite beam with an edge crack is submitted to a cyclic bending moment and the crack bridging
actions due to the fibers. Assuming a general elastic-linearly hardening crack bridging model for the fibers and a lin-
ear-elastic law for the matrix, the statically indeterminate bridging actions are obtained from compatibility conditions.
The elastic and plastic shake-down phenomena are examined in terms of generalised cross-sectional quantities and, by
employing a fatigue crack growth law, the mechanical behaviour up to failure is captured. Within the framework of the
proposed fracture mechanics-based model, the cyclic crack bridging due to debonding at fiber–matrix interface of short
fibers is analysed in depth. By means of some simplifying assumptions, such a phenomenon can be described by a linear
isotropic tensile softening/compressive hardening law. Finally, numerical examples are presented for fibrous composite
beams with randomly distributed short fibers.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

As is well-known, by incorporating ductile fibers into the brittle matrix of a composite material, several
mechanical properties can be improved (cracking resistance, ductility, impact resistance, fatigue strength).
Fiber-reinforced cementitious composites are employed in an increasing amount of civil engineering struc-
tures. These materials under cyclic loading tend to develop cracks in the matrix, and such cracks are
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Nomenclature

a crack depth
b height of the beam cross-section
ci position of the ith reinforcement with respect to the bottom of the beam cross-section
Df fiber diameter
ei elastic part of crack opening translation at the ith reinforcement level
E Young modulus of the matrix
Ef Young modulus of the fibers
Fi crack bridging force of the ith reinforcement
FP,i initial yield force of the ith reinforcement
F P;i current yield force of the ith reinforcement
hi hardening modulus of the crack bridging law for the ith reinforcement
K0,i elastic stiffness of the crack bridging law for the ith reinforcement
Kt,i plastic stiffness of the crack bridging law for the ith reinforcement
KI stress intensity factor
KIC critical stress intensity factor (fracture toughness)
l embedded length of a single fiber
Lf fiber length
M bending moment
MF bending moment of either unstable fracture or crushing of the matrix
MP plastic bending moment
MSD shake-down bending moment
n number of reinforcements intersected by the crack
N number of loading cycles
pi plastic part of crack opening translation at the ith reinforcement level
P pull-out force of a single fiber
PP initial yield pull-out force of a single fiber (peak load)
t thickness of the beam cross-section
Vf fiber volume fraction
wi crack opening translation at the ith reinforcement level
b load factor
d pull-out translation of a single fiber
dP pull-out translation of a single fiber at the initial yield pull-out force PP

fi = ci/b relative position of the ith reinforcement with respect to the bottom of the beam cross-
section

ji hardening parameter of the crack bridging law for the ith reinforcement
kij localised compliance related to the crack opening translation at the ith reinforcement level due

to a unit crack opening force Fj = 1 acting at fj

kiM localised compliance related to the crack opening translation at the ith reinforcement level due
to a unit bending moment M = 1

kMM rotational localised compliance due to a unit bending moment M = 1
n = a/b relative crack depth
pi plastic part of crack opening translation at the ith reinforcement level, accumulated along the

tensile or compressive direction
rP initial yield crack bridging force per unit crack surface
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s0 frictional bond at fiber–matrix interface
u rotation of the cracked beam cross-section

Subscripts

co referring to the cut-off of crack bridging force
i referring to the ith reinforcement intersected by the crack, with i = 1, . . . ,n

j referring to the jth reinforcement intersected by the crack, with j = 1, . . . ,n

Superscripts

� referring to a dimensionless (normalised) parameter
1 referring to tensile plastic deformations
2 referring to compressive plastic deformations
k referring to the load step k

Other symbols are defined as they appear in the text.
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bridged by the fibers. In order to correctly predict the fatigue life of a structural component, the effect of
fiber bridging can effectively be modelled by treating the fibers as a distribution of forces acting on the crack
faces. The fatigue crack growth influences the bridging actions, and causes significant changes in the
mechanical properties of the above materials. Some theoretical models have been proposed to describe such
phenomena and predict fatigue life (e.g. for metal–matrix composites with continuous fibers, see the models
reported in Bao and McMeeking, 1995, and Begley and McMeeking, 1995; for cementitious composites
with short fibers, see the recent models presented in Zhang and Stang, 1998, Zhang et al., 1999, and
Matsumoto and Li, 1999).

In the present paper, a cracked portion of a straight beam subjected to an external cyclic bending mo-
ment and the crack bridging actions due to the fibers is analysed (Fig. 1). Assuming an elastic–plastic crack
bridging model, characterised by a general linear hardening rule for the fibers and a linear-elastic law for
the matrix, the statically indeterminate bridging actions are obtained from compatibility conditions related
to the crack opening translations at the levels of the fibers. The elastic and plastic shake-down phenomena
are examined in terms of applied bending moment against beam cross-section rotation, and the mechanical
behaviour of the composite beam up to failure is captured by applying the well-known Paris fatigue crack
growth law. Within the framework of the proposed fracture mechanics-based model, the cyclic crack bridg-
ing due to debonding at fiber–matrix interface of short fibers is analysed in depth. By means of some sim-
plifying assumptions, such a phenomenon can be described by a linear isotropic tensile softening/
compressive hardening law. Finally, numerical examples are presented for fibrous composite beams with
randomly distributed short fibers.

The model here presented originates from previous formulations for monotonic loading applied to
beams with either a single reinforcement (Carpinteri, 1984) or multiple reinforcements (Carpinteri and
Fig. 1. Schematic of the model.
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Massabò, 1996, 1997), and for cyclic loading (see Carpinteri and Carpinteri, 1984, Carpinteri, 1991, 1992,
Carpinteri et al., 2005, for the case of a single reinforcement; Carpinteri and Puzzi, 2003, for the case of two
reinforcements; Carpinteri et al., 2004, for the case of multiple reinforcements). The compatibility condi-
tions considered in such papers to determine the statically indeterminate reinforcement actions are related
to the rotation of the cracked beam cross-section in the case of a single reinforcement, and to crack opening
translations in the case of multiple reinforcements. Further, note that the crack bridging behaviour due to
the reinforcements is assumed as rigid-perfectly plastic in the above models, while it is assumed as elastic-
linearly plastic in the model herein developed. This assumption allows the modelling of different types of
crack bridging behaviour, like that due to short fibers (see Section 4.1) which is characterised by a softening
law during tensile sliding of fibers.
2. Theoretical model

2.1. Basic framework

Consider a cracked portion of a unidirectional reinforcement composite straight beam with a rectangular
cross-section under bending moment M (Fig. 1), which is cyclically varied from Mmin to Mmax (constant
amplitude cycles). The crack presents a depth a, and is assumed to be subjected to Mode I loading (i.e.
the crack is normal to the longitudinal axis of the beam). Reinforcements are discretely distributed across
the crack and oriented along the longitudinal axis of the beam. The position of the ith reinforcement
(i = 1, . . . ,n, where n is the number of reinforcement intersected by the crack) is described by the distance
ci with respect to the bottom of the beam cross-section. Note that the reinforcement numbers are sorted
according to the reinforcement positions along the beam height b, by assuming that reinforcement no. 1
is the nearest to the bottom of the beam cross-section. Further, the relative crack depth n = a/b and the
normalised coordinate fi = ci/b are defined. As is shown in Section 4.3, reinforcements can be considered
as idealised bridging elements (oriented along the longitudinal axis of the beam), which simulate the equiv-
alent bridging action of randomly distributed short fibers.

The mechanical behaviour of the composite beam is as follows. The matrix (treated as a homogeneous
and isotropic material) is assumed to present a linear elastic constitutive law, whereas the reinforcements
are assumed to behave as elastic–plastic bridging elements which connect together the two crack faces.

2.2. Crack bridging law

A uniaxial elastic–plastic model with linear hardening for crack bridging due to reinforcements is
adopted. For the ith reinforcement, with i = 1, . . . ,n, the relationship between the bridging force Fi and
the crack opening translation wi at the reinforcement level is schematically described in Fig. 2. In particular,
the elastic domain is described by a linear relationship with a stiffness K0,i, whereas the stiffness in the plastic
domain is equal to Kð1Þt;i and Kð2Þt;i in tension and compression, respectively.

A decomposition can be applied to the total crack opening translation wi so that wi = ei + pi, where ei is
the elastic translation and pi is the plastic translation. Further, the translation pi is equal to pð1Þi � pð2Þi , where
pð1Þi and pð2Þi are non-negative quantities corresponding to the plastic crack opening translations indepen-
dently accumulated along the tensile and compressive direction, respectively. The bound of the elastic
domain is described by the following relationship:
F
ð1Þ
P;i

�F
ð2Þ
P;i

8<:
9=; ¼ F ð1ÞP;i

F ð2ÞP;i

( )
þ hð1Þi jih

ð2Þ
i

jih
ð1Þ
i hð2Þi

" #
pð1Þi

pð2Þi

( )
ð1Þ



Fi

wi
wco,i

1

11

1

K0,i K0,i

)2(
,itK

)1(
,, iAiAp π= eA,i

wA,i

1)(
,itK)1(

,iPF

)1(
,iPF

)2(
,iPF−

)2(
,iPF

Fco,i

A

B

eB,i pB,i

wB,i

)1(
,iBπ

Fig. 2. Elastic–plastic model with a general linear hardening rule describing the relationship between the reinforcement bridging force
Fi and the crack opening translation wi at the reinforcement level for the generic ith reinforcement.
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where F ðlÞP;i and F
ðlÞ
P;i (with l = 1 and l = 2 for tension and compression, respectively) are the initial and cur-

rent yield forces for the ith reinforcement (F ðlÞP;i is a non-negative quantity), ji is a parameter characterising

the hardening law, and hð1Þi and hð2Þi are the hardening moduli given by:
hðlÞi ¼ KðlÞt;i
K0;i

K0;i � KðlÞt;i

ðl ¼ 1; 2Þ ð2Þ
where hðlÞi > 0 corresponds to (positive) hardening, and hðlÞi < 0 corresponds to softening (negative
hardening).

Depending on the values of the parameters in Eq. (1), different types of plastic behaviour can be consid-
ered. As far as hð1Þi and hð2Þi are concerned, we may have:

(i) hð1Þi > 0; hð2Þi > 0 tensile/compressive hardening,
(ii) hð1Þi < 0; hð2Þi < 0 tensile/compressive softening,

(iii) hð1Þi > 0; hð2Þi < 0 tensile hardening/compressive softening,
(iv) hð1Þi < 0; hð2Þi > 0 tensile softening/compressive hardening.

Note that, for negative values of hð1Þi and/or hð2Þi , the Drucker�s stability postulate is not fulfilled (e.g. see

Jirasek and Bazant, 2002). On the other hand, for jhð1Þi j þ jh
ð2Þ
i j > 0 the following hardening rules may be

considered by varying the hardening parameter:

(i) ji = 1 isotropic hardening,
(ii) ji = �1 kinematic hardening,

(iii) �1 < ji < +1 cyclic hardening,
(iv) ji = 0 Koiter hardening.

In the proposed elastic–plastic crack bridging model, a cut-off crack opening translation wco,i can be
accommodated for positive values of wi (Fig. 2) so that, if wi > wco,i, the bridging action of the ith reinforce-
ment becomes identically null. Note that the model is physically meaningful for non-negative values of wi,
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i.e. when material overlapping along the crack faces does not occur (see Section 2.5 for some details on this
aspect). Further, note that the rigid-perfectly plastic crack bridging model (symmetric in tension and com-
pression), reported in Carpinteri et al., 2004, becomes a special case of the present model by posing:

hð1Þi ¼ hð2Þi ¼ 0; F ð1ÞP;i ¼ F ð2ÞP;i ;K0;i !1 and wco,i!1.
2.3. Compatibility conditions

Since the problem being examined is statically indeterminate, the unknown bridging actions Fi (with
i = 1, . . . ,n) on the matrix can be deduced from n kinematic conditions related to the crack opening trans-
lations (wi, with i = 1, . . . ,n) at the different reinforcement levels. In particular, since the matrix is assumed
to behave in a linear elastic manner, linear elastic fracture mechanics can be applied, and the crack opening
translation wi at the ith reinforcement level is computed through the superposition principle (Carpinteri
et al., 2004):
wi ¼ wiM þ
Xn

j¼1

wij ¼ kiM M �
Xn

j¼1

kijF j ð3Þ
where wiM and wij are the crack opening translations produced by the bending moment M and by the gen-
eric force Fj (assumed to be positive when the jth reinforcement is under tension), respectively; the localised
compliances, kiM and kij, due to the crack, represent the ith crack opening translation for M = 1 and that
for a unit crack opening force, Fj = 1, acting at fj, respectively. Using the matrix formulation, the crack
opening translations are given by:
fwg ¼ fkMgM � ½k�fF g ð4Þ
where {w} = {w1, . . . ,wn}T is the vector of the crack opening translations at the different reinforcement lev-
els, and {F} = {F1, . . . ,Fn}T is the vector of the unknown crack bridging forces. Further, {kM} is the vector
of the localised compliances related to the bending moment M, whereas [k] is a symmetric square matrix of
order n, whose generic element (ij) represents the localised compliance kj.

The unknown reinforcement actions {F} can be determined from congruence conditions. In other words,
because of the elastic–plastic crack bridging law for the reinforcements, compatibility requires that
fwg ¼ ½A�fF g þ fBg ð5Þ
where the matrix [A] is diagonal and contains the following elements: aii ¼ ðK0;iÞ�1 in the elastic domain;
aii ¼ ðKðlÞt;i Þ

�1 in the plastic domain (l = 1, 2). The vector {B} contains the plastic part of the crack opening
translations (e.g. for the generic ith reinforcement and the unloading elastic segment reported in Fig. 2:
bi = pA,i).

By equating Eqs. (4) and (5), we have:
fkMgM � ½k�fF g ¼ ½A�fF g þ fBg ð6Þ
and the unknown vector {F} can be obtained from Eq. (6):
fF g ¼ ð½k� þ ½A�Þ�1ðfkMgM � fBgÞ ð7Þ
Since the matrix [A] and the vector {B} are functions of the solution vector {F}, Eq. (6) must be solved
according to an incremental procedure (see Section 2.5) which accounts for the loading–unloading alterna-
tive corresponding to elastic-to-plastic transitions when wi dwi > 0 (dwi = increment of the total crack open-
ing translation at the ith reinforcement level) and to plastic-to-elastic returns when wi dwi < 0.
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2.4. Fatigue crack growth and failure

The crack is herein assumed to propagate under cyclic loading according to the Paris law
da/dN = C(DKI)

m (Paris and Erdogan, 1963). The stress intensity factor (SIF) range DKI is taken as equal
to (hKI,maxi–hKI,mini), where KI,max and KI,min are the maximum and minimum SIF value within a load
cycle, and h i are the MacCauley brackets (hxi = (x + jxj)/2). The stress intensity factor KI is computed
through the superposition principle: KI ¼ KIM �

Pn
i¼1KIi, where KIM and KIi are due to the bending

moment M and the reinforcement action Fi respectively (see Appendix A in Carpinteri et al., 2004). Note
that the crack length increments due to fatigue loading imply a variation of the localised compliances.

The collapse of the beam under the applied bending moment might occur for two possible reasons: (1)
unstable fracture of the matrix (when the toughness KIC of the material is attained, that is, KI = KIC), or (2)
crushing of the matrix (when the normal compressive stress rc, computed through the classical bending the-
ory applied to the ligament, attains the material strength fc).

2.5. Numerical procedure

The theoretical model presented above is implemented in a numerical step-by-step procedure. Accord-
ingly, the cyclic loading history of the external bending moment is applied through finite holonomic steps,
and plastic-to-elastic returns corresponding to wiDwi < 0 (Dwi = finite increment of the total crack opening
translation at the ith reinforcement level) might occur at bending moment reversals. The flow-chart of the
procedure is as follows:

1. Compute the localised compliances (see Eqs (A.11)–(A.13) in Carpinteri et al., 2004; Appendix A) for
the beam being considered, with a given value n of the initial crack depth.

2. For the virgin elastic domain, initialise the matrix ½A� ð0aii ¼ ðK0;iÞ�1
; i ¼ 1; . . . ; nÞ, the vector

fBg ð0bi ¼ 0; i ¼ 1; . . . ; nÞ, the plastic crack opening translations ð0pðlÞi ¼ 0; i ¼ 1; . . . ; n; l ¼ 1; 2Þ
and the bounds of the elastic domain (0F

ðlÞ
P;i ¼ F ðlÞP;i from Eq. (1); i = 1, . . . ,n; l = 1, 2).

3. At the generic load step k, determine the solution vector {kF} from Eq. (7), by posing either
M = Mmax (during loading) or M = Mmin (during unloading). If at least one of the crack opening
translations at the reinforcement levels (obtained from Eq. (5)) attains a negative value, the solution
vector {kF} results to be physically meaningless (because of material overlapping along the crack sur-
faces), and the numerical procedure stops.

4. Calculate the load factor kb for which the most highly stressed elastic reinforcement is on the verge of
its elastic domain:
kb ¼ max
16i6n

kF i � k�1F i

k�1F
ðlÞ
P;i � k�1F i

( )
if k�1F

ðlÞ
P;i � k�1F i 6¼ 0 ð8Þ
where l = 1 during loading, and l = 2 during unloading. Note that, when the kb value computed from
Eq. (8) results to be lower than 1 (that occurs when there is no new reinforcement yielding during the
load step k), the load factor is posed as equal to the unity (see Eqs. (9) and (10) below, to better under-
stand such a position). In the case that cut-off values of the bridging actions are considered, the max-
imisation of Eq. (8) should be made also for the ratio ðkF i � k�1F iÞ=ðF co;i � k�1F iÞ during a loading

step if k�1F
ð1Þ
P;i � k�1F i ¼ 0.

5. From the load factor kb, calculate the bending moment kM for which the most highly stressed elastic

reinforcement is on the verge of its elastic domain, namely:
kM ¼ M � k�1M
kb

þ k�1M ð9Þ
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where M = Mmax during loading and M = Mmin during unloading. Note that, at a load step k corre-
sponding to either a loading–unloading reversal or an unloading–reloading reversal, kb is equal to 1
and, according to Eq. (9), kM results to be equal to either Mmax or Mmin, respectively. Further, at the
first load step k after a loading–unloading reversal, k�1M is equal to Mmax whereas, at the first load
step k after an unloading–reloading reversal, k�1M is equal to Mmin. Then, it can be remarked that, at
the very first load step (i.e. k = 1), k�1M = 0M is equal to 0.

6. Update the reinforcement actions:
fkF g ¼ f
kF g � fk�1F g

kb
þ fk�1F g ð10Þ
7. Calculate the plastic crack opening translations kpðlÞi ði ¼ 1; . . . ; n; l ¼ 1; 2Þ. For each reinforcement

having kpð1Þi > 0 during a loading step or kpð2Þi > 0 during an unloading step, calculate its current elas-

tic domain (kF
ðlÞ
P;i; i ¼ 1; . . . ; n; l ¼ 1; 2; see Eq. (1)).

8. If the load step k does not terminate at a reversal, update the elements kaiiðkþ1aii ¼ ðKðlÞt;i Þ
�1 with l = 1

during a loading step and l = 2 during an unloading step) and kbi for the ith reinforcement which is
placed on the verge of its elastic domain during the load step k (elastic-to-plastic transition). If
the load step k terminates at a reversal, update the elements kaiiðkþ1aii ¼ ðK0Þ�1Þ and kbi for each rein-

forcement having kF
ð1Þ
P ;i � kF i ¼ 0 during a loading step or kF

ð2Þ
P ;i � kF i ¼ 0 during an unloading step

(plastic-to-elastic returns). If the ith reinforcement has reached the cut-off limit (kFi = Fco,i), cancel
out the corresponding row in the matrices and vectors of Eqs. (4)–(7).

9. Stop if KI = KIC or if the compressive strength fc is attained in the matrix.
10. Increase the crack length according to the Paris law and update the localised compliances. The Paris

law is applied after every block of cycles. The number of cycles in each block is calculated in order to
produce an increment of the crack length Dn greater than a given fraction of the beam height.

11. Return to step no. 3 of the present procedure.
3. Cyclic flexural behaviour

The relative rotation u, due to the crack only (i.e. excluding the elastic deformation of the matrix), of the
two extreme cross-sections of the beam portion in Fig. 1 can be obtained as follows:
u ¼ kMM M � fkMgTfF g ð11Þ

where kMM is the rotational localised compliance due to a unit bending moment M = 1 (see Eq. (A.13) in
Carpinteri et al., 2004; Appendix A). According to the numerical procedure outlined above, the rotation ku
is calculated through Eq. (11), by substituting M with kM (see Eq. (9)) and {F} with {kF} (see Eq. (10)).

The overall response of the cracked beam cross-section under cyclic bending can be analysed in terms of
applied bending moment M vs cross-section rotation u curves. For a given crack depth, the most significant
values of the bending moment are: the plastic bending moment MP which produces the first tensile yielding
in the most highly stressed reinforcement during loading; the shake-down bending moment MSD above
which the first compressive yielding in the most highly stressed reinforcement occurs during unloading; fur-
ther, MF is the bending moment of matrix unstable fracture when KI attains KIC, or the bending moment of
matrix crushing when the compressive strength fc is attained. The following regions of behaviour can be
identified (Fig. 3):

(i) elastic behaviour for 0 6Mmax 6MP (see the case related to M 0
max),

(ii) elastic shake-down for MP 6Mmax 6MSD (see the case related to M 00
max),

(iii) plastic shake-down for MSD 6Mmax 6MF (see the case related to M 000
max).



Fig. 3. Schematic of bending moment M against rotation u cyclic curves identifying the following regions of behaviour: elastic
behaviour for M ranging from M 0

min to M 0
max (load steps 0 0, 1 0, 2 0, 3 0); elastic shake-down for M ranging from M 00

min to M 00
max (load steps

000, 100, 200, 300, 400, 500, 600); plastic shake-down for M ranging from M 000
min to M 000

max (load steps 0000, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000,
11000, 12000; the dashed area 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000 corresponds to the energy dissipated per cycle).

A. Carpinteri et al. / International Journal of Solids and Structures 43 (2006) 4917–4936 4925
In the case of plastic shake-down, the bending moment vs rotation curve describes a hysteretic loop, and
the energy dissipated per cycle is equal to the area of this loop (e.g. see the dashed area 4000, 5000, 6000, 7000, 8000,
9000, 10000, 11000, 12000 in Fig. 3):
work

cycle
¼
Xse

k¼sb

1

2
ðkþ1M þ kMÞðkþ1u� kuÞ ð12Þ
where sb = load step at the beginning of the cycle, and se = load step at the end of the cycle (e.g. sb = 4000 and
se = 11000 in Fig. 3).

Provided that the crack depth does not change (non-propagating crack), the constant amplitude cyclic
flexural behaviour discussed above in terms of bending moment M against beam cross-section rotation u is
reminiscent of that described through a classical constitutive theory for cyclic plasticity with a linear-piece-
wise kinematic hardening law (e.g. see Chaboche, 1986, for a review, and Masing, 1926, for his early par-
allel sub-element model). Therefore, no ratchetting effect (accumulated plastic deformations) is accounted
for by the proposed model. This behaviour can also be demonstrated by the fact that, according to the
present model, the M–u relationship (11) depends only on the current values of the variables [A]
and {B} (see Eq. (7)) and of the internal-state variables pð1Þi and pð2Þi ði ¼ 1; . . . ; nÞ, so as to exclude any
hereditary condition in the model (e.g. see Chaboche, 1986).
4. The case of short-fiber composites

Let us consider a fibrous composite material characterised by straight fibers of length Lf and diameter Df

(Fig. 4), whereas Vf is the fiber volume fraction.

4.1. Pull-out analysis of a single fiber

Consider first an isolated fiber loaded at its end with a pull-out force P acting along the fiber axis (e.g. see
Marshall et al., 1985; McCartney, 1987; Li, 1992). The fiber is embedded in a matrix cylinder of diameter
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Fig. 4. Cyclic pull-out behaviour of a single aligned fiber.
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Df/
p

Vf (corresponding to the fiber–matrix unit cell) (Fig. 4). Both the fiber and the matrix are taken as
elastic (E and Ef are the Young modulus of the matrix and the fiber, respectively). Further, two zones
are assumed along the embedded length l of the fiber: a sliding zone (understood as the activation zone
of frictional sliding between fiber and matrix) characterised by a constant frictional bond stress s0; a
non-sliding zone characterised by equal strains in both the matrix and the fiber (i.e. the effect of shear stress
is neglected).

Under such hypotheses, as the force P increases, extension of the sliding zone from the free surface of the
matrix cylinder occurs, and the translation d of the loaded end of the fiber increases as a result of both the
stretching of the fiber segment (along the length of the sliding zone) and the deformation of the fiber–matrix
unit cell (along the length of the non-sliding zone). The P–d relationship is as follows (Marshall et al., 1985;
dashed line in Fig. 4):
P ðdÞ ¼ pffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ gÞEfD3

f s0d
q

ð13Þ
where
g ¼ ðEf V fÞ=½Eð1� V fÞ� ð14Þ
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Eq. (13) is valid until the sliding zone reaches the embedded end of the fiber (full debonding of the fiber),
which corresponds to a pull-out translation dP and a force PP given by:
P P ¼ pDfls0 ð15Þ
The peak load PP corresponds to the initial yield force according to the elastic–plastic crack bridging model
presented above (see Section 4.3). By replacing P(d) with PP and d with dP in Eq. (13), we obtain:
dP ¼ ð2l2s0Þ=½ð1þ gÞEfDf � ð16Þ
After full debonding, fiber pull-out continues, and the pull-out force decreases as a result of the decreas-
ing embedded length of the fiber. Assuming a constant frictional bond and ignoring the elastic stretching of
the fiber and the fiber–matrix unit cell at this stage, the following relationship holds (Li, 1992; solid line
passing through points B and CO in Fig. 4):
P ðdÞ ¼ pDf ls0 1� d� dP

dco � dP

� �
ð17Þ
where dco is the cut-off translation (of the loaded end of the fiber) corresponding to a complete pull-out of
the fiber of initial embedded length l, that is:
dco ¼ l ð18Þ

Eqs. (13)–(18) describe the pull-out behaviour of a single fiber under monotonic loading in its pre- and

post-peak stages. The peak load PP (Eq. (15)) can be reached without rupture of the fiber only if it is lower
than rfðpD2

f =4Þ, where rf is the fiber tensile strength. From such a condition, we obtain:
l 6 ðrfDfÞ=ð4s0Þ ð19Þ

This relationship is commonly used (posing l = Lf) to define the so-called short-fiber range characterised by
a shear failure of the interface rather than a tensile failure of the fiber.

Within the framework of the proposed model, the non-linear expression (13) is approximated by the se-
cant passing through point B of coordinates (dP,PP) and point O (see solid line in Fig. 4 for the pre-peak
stage).

Now the monotonic pull-out behaviour described above is extended to cyclic loading. To summarise, in
the initial pre-peak stage (see the generic point A in Fig. 4) the load P linearly increases with increasing d up
to full debonding (point B). Afterwards, the pull-out force decreases and, at a generic load reversal (point
C), the sliding direction and the frictional bond stress s0 start to reverse (e.g. see McMeeking and Evans,
1990). During unloading, a linear P–d relationship is assumed to hold (see the generic point D) until the
reversed sliding zone reaches the embedded end of the fiber (full reversed debonding of the fiber of embed-
ded length lC, point E). Finally, the load P linearly decreases with decreasing d, due to the increasing
embedded length of the fiber (see the generic point F). When the load attains the value—PP, the fiber is
embedded in the matrix for a length l, and the negative translation—dP is a result of the elastic compressive
deformation of the fiber.

For a non-aligned fiber (that is, when there is an inclination angle a between the fiber and the loading
axis, see Fig. 5a), which is the case of randomly distributed fiber composites (see Section 4.2), various stud-
ies have indicated an increase of the peak load PP with increasing a. As was originally proposed by Morton
and Groves (1976), we can assume:
P PðaÞ ¼ pDf ls0ef a ð20Þ

(instead of PP given in Eq. (15)), where f is the so-called snubbing coefficient whose value usually ranges
from 0.7 to 0.9.
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Fig. 5. (a) Position of the generic fiber with respect to the loading axis (direction of the pull-out load P). (b) Position of the generic fiber
with respect to the crack plane (G = fiber centroid).
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4.2. Randomly distributed short-fiber composites

Let us examine a crack in the matrix of a composite material with randomly distributed short fibers (i.e.
fibers with Lf 6 (rfDf)/(2s0), since we have to pose 2l = Lf in Eq. (19) in this case). For each single fiber
intersecting the crack, the relationship between the crack bridging force P and the crack opening translation
w might be described by Eqs. (13)–(18), where we should consider that the crack opening translation
is equal to twice the pull-out displacement (w = 2d) and the embedded length l of the fiber is equal to
Lf/2 � z (z = distance of the fiber centroid from the crack plane, measured along the fiber axis, see Fig. 5b).

In a continuous approximation (which is reasonable provided that the fiber mean spacing is much smal-
ler that the crack length), a relationship between the crack bridging stress r, understood as a bridging force
per unit crack surface, and the crack opening translation w can be considered, and the related peak crack
bridging stress rP (corresponding to the initial yield force according to the present elastic–plastic crack
bridging model; see Section 4.3) can be determined. Assuming a uniform distribution for the fibers, corre-
sponding to the following probability density functions: PrðaÞ ¼ 1

2
sin a and Pr(z) = 1/Lf, we have (Li,

1992):
rP ¼
16

pD2
f

V f

Z p=2

0

Z Lf=2

0

pDf

Lf

2
� z

� �
s0

1

Lf

ef a sin a
2

dzda ð21Þ
Integration of Eq. (21) yields:
rP ¼
V fLfs0

Df

1þ f ef p=2

1þ f 2

� �
ð22Þ
4.3. Link to the proposed crack bridging model

The cyclic pull-out behaviour of a single aligned fiber (see Fig. 4) can be used to characterise the crack
bridging behaviour of a fibrous composite. Accordingly, the relationship between the crack bridging stress
r (with a peak value rP given by Eq. (22)) and the crack opening translation w can be described by a dia-
gram similar to the P–d one in Fig. 4.

In order to employ the crack bridging model proposed in Section 2, a discretisation is needed so that the
approximately continuous bridging action distribution can be replaced by a discrete distribution of equiv-
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alent bridging forces. Assuming a constant relative spacing Df = (ci+1 � ci)/b (with i = 1, . . . ,n � 1) for the
equivalent reinforcements, the initial yield force (related to the peak value rP of the crack bridging stress)
for each reinforcement is:
Fig. 6
behavi
agains
F P ¼ rPbtDf ð23Þ
(a) 

(b) 

FP

Fi

wco wiwP

−wP

−FP

1

1

1

K0

K0

)1(
tK

)2(
tK

1

FP

Fi

wco pi

−FP

1
h−

1
h

. Elastic–plastic model with linear isotropic tensile softening/compressive hardening describing the short-fiber bridging
our of the equivalent ith reinforcement: (a) bridging force Fi against plastic crack opening translation pi; (b) bridging force Fi

t total crack opening translation wi.
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Such a value is constant for all the n equivalent reinforcements activated by the crack (Fig. 1). Note that the
spacing Df might be related to the actual fiber spacing (although this is not the case for randomly distrib-
uted short-fibers) or to the diameter of the fiber–matrix unit cell (Fig. 4).

The crack bridging law of short fibers is then described by a specialised version of the proposed elastic–

plastic model, namely by taking ji = 1 (isotropic hardening) and �hð1Þi ¼ hð2Þi > 0 (tensile softening/com-
pressive hardening) in Eq. (1). As is shown in Fig. 6a (reporting the relationship between the bridging force

and the plastic crack opening translation), �hð1Þi ¼ hð2Þi ¼ h ¼ F P=wco with wco = Lf (see Eq. (18) with
dco = wco/2 and l = Lf/2). Then, by posing dP = wP/2 and l = Lf/2 in Eq. (16), we obtain:
wP ¼ ðL2
f s0Þ=½ð1þ gÞEfDf � ð24Þ
Finally, for the values of FP, wco and wP being determined as discussed above, the stiffnesses K0, Kð1Þt ;Kð2Þt

can easily be computed (see the diagram in Fig. 6b, reporting the relationship between the bridging force
and the total crack opening translation).
5. Illustrative numerical examples

Consider a rectangular cross-section of a fiber-reinforced concrete beam with t = 0.2 m, b = 0.3 m, sub-
mitted to a pulsating cyclic bending (Mmin = 0). The concrete mechanical properties E and KIC are assumed
to be equal to 32.1 GPa and 1.75 MPa

ffiffiffiffi
m
p

, respectively. Further, in the present section, the concrete com-
pressive strength is assumed to be as high as to avoid crushing failure, that is, failure is supposed to be
caused by unstable fracture of the matrix.

The fibers, randomly distributed in the cementitious matrix, are characterised by a Young modulus
Ef = 200 GPa, a frictional bond stress s0 = 2 MPa, a snubbing factor f = 0.7 and an aspect ratio
Lf/Df = 50. Two types of fibers are considered: the first one (e.g. typical of steel fibers) is characterised
by a diameter Df = 480 lm (Lf = 24 mm), the second one (e.g. typical of carbon fibers) is characterised
by a diameter Df = 48 lm (Lf = 2.4 mm). Both fiber types are characterised by a tensile strength rf (300
and 3000 MPa for steel fibers and carbon fibers, respectively) as high as to avoid fiber failure (short-fiber
range): the dimensionless parameter Lf/b is equal to 0.08 for the first type (steel fibers), and to 0.008 for the
second type (carbon fibers).

Three values of the fiber volume fraction Vf are considered: 0.6%, 1.2% and 2.4%. The resulting values of
the peak crack bridging stress rP obtained from Eq. (22) are equal to 1.28, 2.56 and 5.12 MPa, respectively.
By adopting the following dimensionless form:
~rP ¼ ðrPb0.5Þ=KIC ð25Þ
we have ~rP ¼ 0.4, 0.8 and 1.6 for the above three values of the fiber volume fraction.
Note that the value of the parameter g (Eq. (14)) ranges from 3.8 to 15.6% as the fiber volume fraction Vf

varies. In the following, in order to consider for each type of fibers the same value of wP regardless of the Vf

value (see Eqs. (14) and (24)), g is taken as equal to zero (stiff matrix hypothesis; e.g. see Li, 1992). The
parameter wP is equal to 12 and 1.2 lm for the steel fibers and the carbon fibers considered, respectively.
The values of wco = Lf are equal to 24 and 2.4 mm for the steel fibers and the carbon fibers considered,
respectively.

In the ensuing numerical examples, a discretisation corresponding to 5% of b is adopted (Df = 0.05 in
Eq. (23)), which corresponds to 20 equivalent reinforcements. The number of cycles in each loading block
used to integrate the Paris law is chosen so as to yield a crack depth increment (during fatigue propagation)
equal to at least 1% of b (Dn = 0.01).
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Fig. 7. (a) Dimensionless plastic bending moment eM P against relative crack depth n. (b) Dimensionless unstable fracture bending
moment eM F against relative crack depth n (solid symbols). Theoretical values of eM F at n = 0.1 and n = 0.6 for unbridged cracks (·)
and bridged cracks with uniform closing stress ~rP (hollow symbols) are also reported.
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Fig. 7a shows the variation of the dimensionless plastic bending moment eM P ¼ MP=ðKICb2.5Þ against the
relative crack depth n (in the range 0.1 6 n 6 0.6), for different values of Lf/b and ~rP. It can be seen that eM P

tends to decrease with increasing n, and that such a bending moment is smaller for carbon fibers (thin-line
curves).

The variation of the dimensionless unstable fracture bending moment eM F ¼ MF=ðKICb2.5Þ as a function
of the relative crack depth n (Fig. 7b) shows different trends of behaviour as ~rP varies. In particular, eM F

tends to decrease with increasing n for small values of ~rP, while the opposite occurs for large values of
~rP. These trends of behaviour are confirmed by the theoretical values of eM F reported in Fig. 7b for some
limiting cases (Tada et al., 1985): an unbridged crack and three bridged crack cases (each bridged crack case
is related to a uniform closing stress rP corresponding to one of the above three ~rP values, respectively).

For the sake of comparison, the predictions of the present model in terms of unstable fracture bending
moment are reported in Table 1 together with those of the theoretical model by Matsumoto and Li (1999),
for different values of the crack depth. Note that the reported results of Matsumoto and Li refer to the net
contribution of fibers to crack bridging, i.e. excluding aggregate bridging contribution. The comparison



Table 1
Dimensionless unstable fracture bending moment eM F against relative crack depth n according to the present model and that by
Matsumoto and Li (1999), for different types of fiber-reinforced concrete

Relative crack depth Present Matsumoto and Li (1999)

SS1 HS1 HS2 SS1 HS1 HS2

0.2 0.14 0.13 0.15 0.12 0.09 0.17
0.4 0.15 0.14 0.20 0.22 0.16 0.32
0.6 0.36 0.28 0.60 0.31 0.21 0.44

SS1 = straight steel fibers with Vf = 0.01; HS1 = hooked-end steel fibers with Vf = 0.01; HS2 = hooked-end steel fibers with Vf = 0.02.
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concerns beams with t = 0.05 m and b = 0.1 m, made of fiber-reinforced concrete with E = 35 GPa and
KIC = 0.5 MPa

ffiffiffiffi
m
p

. Three different combinations of type and content of randomly distributed short fibers
are considered, that is: straight steel fibers with a volume fraction Vf equal to 1% (termed SS1), and hooked-
end fibers with Vf equal to 1% and 2% (termed HS1 and HS2, respectively). Straight fibers are characterised
by a diameter Df = 400 lm, a length Lf = 25 mm and a frictional bond stress s0 = 6 MPa (the snubbing
factor f is equal to 0.8), while hooked-end fibers have Df = 500 lm, length Lf = 30 mm and
s0 = 4.5 MPa (f = 0.75). The Young modulus Ef of the fibers is equal to 210 GPa. As shown in Table 1,
the comparison appears fairly satisfactory, since both the present model and that by Matsumoto and Li
(1999) predict the same trend of behaviour.

By juxtaposing Fig. 7a and b, it can be remarked that depending on n (and on the parameters Lf/b and
~rPÞ, the unstable fracture bending moment can be higher or lower than the plastic bending moment.

For carbon fibers (Lf/b = 0.008) with ~rP ¼ 0.8, Fig. 8 illustrates the bridging force distributions along
the crack at plastic and unstable fracture bending moments (see Fig. 7) for different values of the relative
crack depth n.

In Fig. 9, the cyclic bending moment–rotation curves (~u = normalised rotation, with ~u ¼ ueE andeE ¼ ðEb0.5Þ=KIC) at different values of n are reported for three different cases. For each case, the curves refer
to a pulsating bending moment with Mmax equal to 70% of the corresponding unstable fracture bending
moment for n = 0.10 ( eM ¼ 0.19 for ~rP ¼ 1.6 and Lf/b = 0.008, Fig. 9a; eM ¼ 0.15 for ~rP ¼ 0.4 and
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Lf/b = 0.08, Fig. 9b; eM ¼ 0.15 for ~rP ¼ 0.4 and Lf/b = 0.08, Fig. 9c). The same loading conditions are
adopted in Fig. 10. The three regions of behaviour schematically described in Fig. 3 can be encountered
as the relative crack depth n increases (elastic behaviour in Fig. 9a, elastic shake-down and plastic
shake-down in Fig. 9b and c). Note the non-monotonic trend for the flexural stiffness as the relative crack
depth increases for the case reported in Fig. 9a. This is due to the effect of the activation of new reinforce-
ments as the crack depth increases.
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The cyclic bending moment–rotation curves are reported up to the crack depth corresponding to crack
arrest (DKI = 0, Fig. 9a) or to unstable fracture failure (KImax = KIC, Fig. 9b and c). The reason for crack
arrest when ~rP ¼ 1.6, in contrast to that for unstable fracture failure when ~rP ¼ 0.4, can clearly be observed
in Fig. 10, where the maximum value and range of the SIF KI within a loading cycle at different values of
the crack depth n are reported. For ~rP ¼ 1.6 (Fig. 10a), where KImin = 0 (elastic behaviour) and, hence,
DKI = KImax, the range of SIF (governing the crack growth rate according to the adopted Paris law)
tends to zero as n increases. On the other hand, for ~rP ¼ 0.4 (Fig. 10b), where KImin 5 0 (elastic or plastic
shake-down) and, hence, DKI 5 KImax, the range of SIF tends to decrease as n increases while its maximum
value increases up to KIC (unstable fracture failure).
6. Conclusions

A theoretical model based on fracture mechanics concepts is herein proposed to analyse the fatigue
behaviour of a brittle-matrix fibrous composite beam subjected to a constant amplitude cyclic bending.
Accordingly, a cracked beam with an elastic matrix and fibers acting as general elastic–plastic bridging ele-
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ments is examined. The assumptions of the model allow us to describe typical cyclic phenomena, including
elastic shake-down and plastic shake-down, and to predict fatigue life.

It is shown that the cyclic crack bridging behaviour of short fibers (where failure is dominated by sliding
phenomena at the fiber–matrix interface) can conveniently be described by an isotropic tensile softening/
compressive hardening law, within the general context of the proposed elastic–plastic crack bridging model.

Some composite beams have been analysed in order to show the capabilities of the model. The results are
presented in terms of: bending moment against beam cross-section rotation; plastic bending moment,
unstable fracture bending moment and stress intensity factor against relative crack depth. It is shown that
the fatigue behaviour (leading to unstable fracture failure or crack arrest) is, among others, strongly af-
fected by the dimensionless value of the peak crack bridging stress. A smaller influence of the fiber length
is noticed in the cases being considered.
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